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Abstract. Thesaurus is a collection of words classified according to some
relatedness measures among them. In this paper, we lay the theoretical foun-
dations of thesaurus construction through elementary meanings of words.
The concept of elementary meanings has been advocated and utilized in
compiling Webster’s Collegiate Thesaurus. If each word is supplied with
elementary meanings so that all its meanings are covered by them in a stan-
dard fashion, we can define various similarity measures for a given set of
words. Here we take an axiomatic way to analyze semantic structure of
word groups. Assuming an abstract semantic world, we deduce closed sets
as generalized synonym sets. That is, we show that under certain natural
axioms, we only need to consider closed sets as far as the semantics are
concerned. We also show that the set of generalized synonyms described as
a certain pair of closed sets has a lattice structure. In order to have a flexible
thesaurus, we also analyze structure changes corresponding to three basic
environmental changes: A new word-meaning relation is added, a new word
or a new meaning is included with its word-meaning relations. Actually we
give algorithms to have updated lattice structure from previous one for the
three operations.
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1 Introduction

Thesaurus is a collection of words classified according to some relatedness
measures among them. The relations include synonyms, antonyms, broader
terms, narrower terms, and so forth. These relatedness relations are often
given subjectively at certain fixed level and are difficult to treat quantita-
tively. This is particularly so when thesauri for general terms are concerned.
We want to establish a systematic method to construct objective, flexible,
and versatile thesauri as automatically as possible. The basic difficulty stems
from the fact that we have to handle various meanings of each word. When
we consider general terms, meanings of a word are supposed to be described
in an ordinary dictionary. But how can we compare these defining meanings
preferably in an automatic fashion? One drawback of ordinary definitions
of words in a dictionary (for our purpose at least) is that they are mostly not
written for exact comparison in mind. Here consideration for exact compar-
ison means, for example, that the same expression should be used to define
the same meaning if it is applicable.

Historically speaking, the first modern English thesaurus was compiled
using top-down method by Roget [9] who first gave six classes like Abstract
relations, Space, Matter and so forth. Then, he selected nearly one thousand
head words under which various words and phrases were allocated. Note that
his classification has been done by his own understanding of the meanings
depending on his personal feelings about the words and phrases. The situ-
ation seems similar for a more recent compilation of a Japanese thesaurus
[7]: The editors first set up ten categories and each category is divided into
ten subcategories and finally one thousand head words are seleeted in
hoc fashion. This traditional method relies heavily on editors’ capabilities
and intuition, and it takes much time and energy to complete and maintain
resulting thesauri.

A component analysis method [4], on the other hand, defines a set of mi-
crofeatures to classify a given set of words or objects. This is based on the
standard idea in philosophy to define concepts. The idea has been utilized
in knowledge representation systems for some Al researches [6, 8]. That s,
each concept has its intent and extent where intent corresponds to micro-
features and extent means a collection of objects or words belonging to that
concept. A lattice theoretic investigation along this line has also been carried
out by Ganter and Wille [3]. In this method, a context under consideration is
givena priori and analysis is done by selecting (subjectively) some features
to identify the objects belonging to the context. Through this microfeature
description, words can be classified according to the different feature values
they assume. We can't be sure, however, if certain pair of words have some
common meaning even when they so far fell into the same categories.
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In compiling a thesaurus, a bottom-up method is also feasible. A typical
way to do is to give explicit words relations such as synonyms, broader
terms, antonyms, and so on. This will work as much the same way as the
traditional top-down method but also share the similar drawbacks. An au-
tomatic thesaurus construction technique for information retrieval systems
uses statistical methods to extract such words relations [10]. Inreal elaborate
thesaurus construction such as the Concept Dictionary by Japan Electronic
Dictionary Research Institute [2], both bottom-up and top-down methods
have been employed.

We here consider another bottom-up method which edesientary
meaningf words. The idea of elementary meanings has been advocated
and utilized in compiling Webster's Collegiate Thesaurus [5]. It is a stan-
dardized way of giving meanings under which we can decide certain set of
words become synonymous. These elementary meanings in the thesaurus
should be considered as examples and should not be regarded as a unique
way nor a standard way of giving them. One of the important achievements
of Webster’s Collegiate Thesaurus is that it showed that elementary mean-
ings can be definable at least to an extent that reasonable size thesaurus is
compiled using them. In this paper, we don't try giving appropriate elemen-
tary meanings to a particular set of words, which will be done elsewhere.
Rather, we analyze semantic structure of word sets under the assumption
that some suitable elementary meanings are given. To make our idea as clear
as possible, we restrict ourselves to the case where only broader/narrower
relations (and hence equality relation) are taken into account.

In Sect. 2, we give necessary definitions for our framework and introduce
closed sets. To clarify the relations between words and elementary meanings,
we consider abstract semantics world in Sect. 3. We set up several natural ax-
iomatic relations and reveal some basic properties of our universe, which is
the relations between word set and elementary meaning set. In so doing, we
introduceindependent systemis Sect. 4, a pair of closed set is extracted
as ageneralized synonynthen for the set of generalized synonyms, we
have lattice structure callezemantic similarity latticewhich is actually a
generalized thesauruglere a generalized thesaurus is a thesaurus where
hierarchically structured word sets (generalized synonyms) are arranged
graphically. In these generalized synonyms, words are grouped at various
relatedness levels according to the corresponding elementary meaning sets.
In Sect. 5, we define three basic operations which correspond to the elemen-
tal changes of our universe. Thatis, add word, add meaning, and add relation
operations. We give an algorithm to update the generalized thesaurus un-
der each of the three operations. Although we analyze the properties of the
words-elementary meanings relation theoretically, we also use elementary
meanings of a few words from Webster's Collegiate Thesaurus for explana-
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tory purpose. Detailed validity proofs of the update algorithms are shown
in the Appendix.

2 Words and their meanings — A binary relation

We begin by presenting a formal definition of our framework and its math-
ematical consequences. First, we assume a binary reldtimm the set of
wordsW and the set of elementary meanings A C W x M. Intuitively,
forw € Wandm € M, (w,m) € Ais intended to mean that the woud
has a meaning:. We assume that for any € W there is somen € M
such thafw, m) € A, and for anym € M there is somev € W such that
(w,m) € A. We denote this system ag/, M; A) and call it as theniverse
or our universe of discourse.

Define two functiong:: W — 2™ andw: M — 2" by the relationA
as follows.

p(w) = {m € M|(w,m) € A};
w(m) = {w € W|(w,m) € A}.

We extend these functions for the domaii and 2, respectively, as
follows.

pt 2% oM where pf(U) = m pu(w);

w* :2M 2" where w*(K)= (] w(m).
meK

For completeness’ sake, we assume ftigf)) = M andw*(0) = W. By
the definitions, it is easy to see the followings [1, 3].

Lemma 1. ForanyU;, Uy C W, U; C U, impliesp*(Us) C p*(Uy), and
forany K, , Ko C M, K; C Ky impliesw*(K2) C w*(K7).

Lemma 2. ForanyU; C W andK; C M(j € J), we have

U | =Nwwy) and o || JEK;| =)o (K)).

JjeJ jeJ jeJ jeJ

2.1 Closed set

Consider an ordered set(>) and a mapping from L into itself. If the
mapping satisfies the following three conditions, then it is calletbaure
operator([1, 3].
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(1) ¢(x) 2=
(2) p(p(x)) = p(z)
Q) x>y = o(x)>¢y)

An elementz is calledclosedif ¢(x) = z. WhenL is the power set of
a setX, then a closed element &fis also said to be alosed sebf X.

It is easy to see that*p* andp*w* are closure operators @ and
2M respectively. In fact, the binary relatiohwith mappingse* andw* is
known as a Galois pair [1, 3]. Thus we have the following basic results for
the closed sets with respect to these operators.

Lemma 3(a). ForanyU C W, the following four assertions are mutually
equivalent.

(1) U is aclosed set.

(2) wipr(U) =U.

(3) U = w*(K) for some closeds C M.
(4) U = w*(K) for someK C M.

Lemma 3(b). Forany K C M, the following four assertions are mutually
equivalent.

(1) K is aclosed set.

(2) w'w (K) = K.

(3) K = u*(U) for some closed’ C .
(4) K = p*(U) forsomelU C W,

A closed setw*(K) is to correspond to the set of words having all the
meanings ofK. Then the words in*(K') can be regarded as synonymous
as far as the meaninds are concerned. In later sections, the pait((),

K) is called as a generalized synonym#f is closed. In fact, Webster’'s
Collegiate Thesaurus [5] is a thesaurus which is basically listing words of
w*(m) where{m} is a singleton elementary meaning. The paif((n),

{m}) may be called as an elementary synonym, which is not necessarily a
generalized synonym. These concepts will be made clear in the following
sections.

3 A simple model of semantics

Let R denote an abstract world of semantics in which various relations are
givena priori. Typical such relations include identical, broader/narrower,
related, antonym relations and so forth. To make our framework as simple as
possible for explanatory purpose, we consider here only broader/narrower
relations as a basic relation. Thatis, we consider a partially orderef §&X
where for any elements, 5 € R, « is broader tham (or equivalentlys is
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narrower tharw) if 6 C o or « 3 3. Note thate C g ands C « imply
a = (. Intuitively speakingqe is broader tha if o represents all and every
semantics represented By

3.1 Fundamental relations

For a given universél, M; A), we here think of two mappings: 2"V — R

and X: 2™ — R which relate a set of words and a set of elementary
meanings to the world of semantics, respectively. We call thesemantics
specification mapping®r W and M, respectively. Given a subggtof 1/,

we associate the semantid/ to it. Our intention is that this semantics is
the one shared by all the wordsilih For a subseK of M, we associate

the semantic&’ K which has all the meanings & . The above mentioned
interpretations of the two mappings are given here solely for explanatory
purposes. The properties &f and X are to be derived from the following
axiomatic relations.

Semantics Axiom. A-1. IIU = Yu*(U) forany U C W.

Consider a wordv, then the Semantics Axiom implidsw = X' u(w). This
means that the semanticswfshould be exactly covered by the elementary
meaningg:(w). This is one of the basic premises when we treat elementary
meanings of words.

Monotony Axiom. A-2. K C L implies YK C YL forany K,L C
M.

The Monotony Axiom simply states that the more elementary meanings
there are, the broader semantics they carry. This poses certain restriction on
how the set of elementary meanings should be selected.

We can deduce some immediate consequences from the above axioms
as follows.

Forany K C M, IIw*(K) = Xu*(w*(K)) by A-1 and XK C
Yu*w*(K) by A=2. This means

Lemma4. YK C [Iw*(K) forany K C M, and YK = [Iw*(K) for
any closedK C M.

For a pair of subsets ofi’, we can see tha/ C V = p*(V) C
p*(U) = Xp*(V)C Xp*(U) = IV C IIU. That is, we have

Lemmab5. U CV implies IV C I1U forany U,V C W.

For any two wordswy, we € W, w; is said to be droader termthan
wy (Written aswy = wo) if Hwy; 3 HHws.

We have the following lemmas. First we show a natural property.that
is a broader term tham, if and only if wy has more elementary meanings
thanws.
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Lemma 6. For any two wordsw;, we € W, pu(wy) 2 p(we) if and only if
wy € w*u*(we) and these relations imply; = ws.

Proof. p*(wi) 2 p*(we) = Xp*(wi) I Yu*(we) = Hwy I Hws.
On the other handy*(w1) 2 p*(w2) = w*p*(wi) C w*p*(w2) which
meansthat; € w*u*(w2). Converselyw; € w*p*(wy) impliesy* (wy) 2
p*(wz). O
Lemma?7. (w,m) € A implies Yp*w*(m) C [Tw forany w € W and
m € M. Then(w, m) € A implies ¥'m C ITw a fortiori.

Proof. Let (w,m) € Aforw € W andm € M. Then(w,m) € A
{w) C w'(m) = w'(w) 2 p'w'(m) = Sp(w) I Dp'w(m)
Mw 3 Yp*w*(m).

From the Semantics Axiom and Lemma 4, we have

Lemma8. IIU = Y'u*(U) = Hw*p*(U) forany U C W.

ol |

As w*p*(U) is the closure ol/, this means we only need to consider
closed subsets 6¥ in the universell, M; A) as far as the semantics Bf
are concerned. In other words, closed sets are not only induced by Galois
pair but also deduced naturally from axiomatic semantics analysis.

3.2 Independent systems

Now, we introduce a property which is the converse of A-2 for closed sets,
and call it as independence. That is, we assume, in the sequel, the following
independence axiom.

Independence Axiom. A-3. YK C YL implies K C L forany closed
K,L C M.

Independence then means thak’ = >'L implies K = L whenK andL

are both closed. In other words, independence requires that distinct closed
sets of elementary meanings have different semantics. This also implies that
the i function is unique under giveW, M andR. That is, if there were

andy’ such thatu(w) # p/(w) for somew € W, then the independence
axiom deduces a contradiction. Thus the relation betw&eand M has

less flexibility such that ambiguities like multiple meanings may not exist.
Immediate consequences of assuming independence are as follows.

Lemma 9.

() u(( ))
(b) HU 2 I1

*(V)is equivalenttdIU J IIV forU,V C W.
(wg) is equivalent tav; = wq in particular.
V impliesU C V for closedU,V C W.

2
2



8 Y. Kobuchi et al.

Proof. (a) From A-1 and A-2;.*(U) 2 p*(V) = U 3 IIV. Since
w*(U) andu* (V') are closed (Lemma 3(b)) and because of the Independence
Axiom, we obtainIIU J IV = Xp*(U) J XYu*(V) = p*(U) 2

w (V).

(b) By applyingw* to both sides of.*(U) 2 p*(V), U C V' is proved. O

Lemma 10. Under a given universé¥, M; A), consider an independent
system. For anyl(, K) in 2" x 2™ the following statements are equivalent.

(1) K =p*(U)andU = w*(K).

(2) Kisaclosed setanti = w*(K).

(3) Uis aclosed setan& = p*(U).

(4) U and K are closed sets such thatU = Y K.

Proof. It is easy to see that (1), (2), and (3) are equivalent each other.

( ) = (4): By Lemma 3 and A-1(4) = (1): As U is closed, we have
p*(U) =U. LetK' = p*(U) thenXYK' = Yp*(U) = [IU = Y'K.

Thanks to the independence assumption, we lidve K. O

4 Semantic similarity lattice alias generalized thesaurus

The consideration in the previous sections leads us to the following reason-
ing. Under a given universéi(, M; A), the semantics defined by and

X for the elements a2" and2" through the Axioms A-1, A—2 and A-3
can be suitably expressed as those for closed set @ajr&§ such that

IIU = YK or equivalentlyK = p*(U) andU = w*(K). WhenU # ()
andK # (), U is the set of words whose semantics is represented by a set
of elementary meaning&’. Hence we call this closed set pair,(K) as a
generalized synonym

Define the ses = {(U, K) € 2V x2M|K = p*(U) andU = w*(K)}.

We can associate an orderon S as follows.

For U;, K;)in S(i = 1,2),

(U1, K1) < (Uy, Ko) if K7 C Ky (or equivalentlyl/; 2 Us)

As shown below, §, <) becomes a complete lattice which we call as
semantic similarity latticelf (W, #) and/or (), M) are inS, which is the
case most of the time, we calb'(— {(W,0), (0, M)}, <) asgeneralized
thesaurus

Theorem 11. (S, <) is a complete lattice in which join and meet are given

by
eJ (Uj, Kj) ﬂUj,uw UK]-
J jeJ jeJ
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AUy, Kj) = | win” Uu | Nk
/ jed jed

Proof. Itis well known that ifU;'s (5 € J) are closed, so iS]jGJ U; [1].
From Lemma 2 we can show that

(U | =0 | (@ W) | =0 [ o [ U W U))

jeJ jeJ jeJ

=" | [ UKy

jed

Therefore(ﬂjej Uj, pw* (UjeJ KJ)) € S. Itis trivial that (ﬂjeJ Uj,
wrw* (U]EJ KJ>> is the least upper bound ¢{U;, K;)|j € J} in S.

That is Ve (Uj, K;) = (ﬂjeJ Uj, p*w* (U]EJ KJ)) The remaining
dual part can be shown similarly.

Incidentally, this semantic similarity lattice is the dual of a concept lattice
[3, 11], as far as the mathematical structure is concerned.

Now we give a simple toy example of universe, generalized synonyms
and corresponding semantic similarity lattice for illustrative purpose. The
elementary meanings for the chosen words are taken from Webster’s Colle-
giate Thesaurus [5].

Example 1.Consider a universéi(y, My; A;) whereW, M; and A, are
given below.

W, = {education, information, knowledge, learning, scignce
={E, K L, S}

M, ={0,0,0,0,0,0,0,0,0}

O : a power or skill that results from persistent endeavor and cultivation

O : enlightenment and excellence of taste acquired by intellectual and
aesthetic training

: the act or process of educating

: the product or result of being educated

: the quality or state of being erudite

: the act of declaring, proclaiming, or publicly announcing

: the body of things known about or in science

: a piece of advice or confidential information given by one thought
to have access to special or inside sources

: areport of events or conditions not previously known

I I o

|
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®
®
E ®
I @
K ®
L °
S
®
Fig. 1.
(D, Mq)

/I\

(E,00006) (K, 000) (I, ®2e0)

(EL, @@) (EK, ®®@) (KS, @Q)

(EKLS, @) (IKS, @)
(W1, ©)
Fig. 2.

All

u(education)= {0,0,0,0,0}
p(information)= {0, 0, 0,0}
u(knowledge)= {00, 0,0}
u(learning)= {00, 0}
u(science)= {0O,0}

This word-meaning relatiod isillustrated as a bipartite graph in Fig. 1.
We use the abbreviation lik&[, I ) in place of {education, learning
{O, O0}). The semantic similarity lattice of this universe is illustrated in
Fig. 2.
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As shown in the lattice diagram, there are 8 generalized synonfns: (
mm  ),(K,0 )(,m ), (EL,00 ),(EK,I0 ),(KS,1 ), (EKLS,
0), (IKS, 0).

Now we can use the lattice5( <) instead of &, C) for the semantic
analysis of IV, M; A). In order to see this, define a mappihg S — R
wherel'(U,K)) = IIU = YK.

Theorem 12. The mapping is an order preserving mapping frony (<)
to (R, ©).

Proof. From Lemma 10/ is well defined. Let(U;, K1) < (Uz, K3).
Then K1 C Ks, which impliesXYK; C YK, by Axiom A-2. That is,
I'((Uh, K1) E I'((Uz, K2)). B O
Further, define the following two mapping&l: 2" — S and X:
oM _, S where II(U) = (w*p*(U), u*(U)) for U € 2V and X(K) =
(W (K), p*w*(K)) for K € 2M,
Then we have

Lemma 13.

(@) II(U) = Xp*(U) forany U C W.
(b) X(K) = IIw*(K) forany K C M.

Proof. (a) Lu*(U) = (w*(u*(U)), w*e*(u*(U))) = (w*u*(U), p*(U))
— 1(U).
(b) Hw*(K) = (v'p"(w"(K)),p" (w*(K))) = (w(K) p'w(K))
— S(K).

Lemma 14. K C L implies £(K) < X(L) forany K,L C M.
Proof. K C L = p'w*(K) C p'w*(L) = (w*(K),p*'w*(K)) <
(W*(L), wrw™(L)). 0

Lemma 15. ¥ (K) < (L) implies K C L for any closedK, L C M.

Proof. SinceK and L are closed, we hav&(K) < (L) = (w*(K),
prw(K)) < (w*(L), p'w*(L)) = (w*(K), K) < (w*(L),L)= K C L.
O

Theorem 16.
(@) II(U) = I'II(U) forany U C W.

(b) ¥(K)=TX(K) foranyclosed K C M.

Proof. (a) [IU = Xp*(U) = I'((w*p*(U), p*(U))) = TII(U)
(b) XK = Huw*(K) = I'(w*(K), p*w*(K))) = T'S(K). O
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_ These theorems and lemmas show that instedd ahd X, we can use

IT and X respectively, and the set of generalized synonyms can take the
place of abstract semantics world. From the viewpoint of the duality of our
semantic similarity lattice and the concept lattice of Ganter and Wille, the
corresponding part of above discussions aldoufl and X’ can be seen in
their “The Basic Theorem on Concept Lattice” [3, p.20]. They discuss the
conditions that a concept lattice is isomorphic to a complete lattice. In our
semantic similarity lattice, we consider a mappifigs a relation between

a semantic similarity lattice and a partial order Bet

5 Updating universe and generalized thesaurus

In real semantic world, the entities and relations are under constant change:
Newwords are included in the vocabulary, some meanings of words are mod-
ified to produce new elementary meanings, and some new connections be-
tween words and meanings are established. Then we consider a few primitive
operations on the universe to update the existing generalized thesaurus. We
here define three operations which update the univérsé; A)to (W, M

A) with corresponding semantic similarity lattice (SSL) changes. We denote

the elementary meaning function and the word functiod®f (/; A) asi
andw, respectively.

AR) Add Relation Operation:
A new word-meaning relatioru(, m) is added toA wherew € W,
m € M and (w,m) ¢ A. That is, we consider the case where
W=W,M=M and A= AU {(w,m)}.

AW) Add Word Operation:
A new wordw is added tdV wherew has a set of elementary meanings
N. We assume thaV is a subset of/. Thatis,W = W U {w}(w ¢

W), M=M,A= AU (w x N),u(w) = N.

AM) Add Meaning Operation:
A new meaningn is added taV/ where a set of word¥’ is assumed
to have this meaning. Thati8&/ = W, M = M U {m}(m ¢ M),
A=AU(V xm) andw(m) =V.

We are interested in how the structure of SSL is modified by these oper-
ations. More general operations like merging a univevgg, (\/’; A") with
another v, M; A) can be expressed as combinations of these primitive
operations.

Let S [S] be the semantic similarity lattice of the univer$&,(\M; A)

[(W, M; A), respectively]. For each operation, we give an algorithm to make
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S from S. In the Appendix, we prove that these algorithms genefate
what follows,C denotes proper set inclusion.

We define a mapping: S — S to consider the AR operation. We show
in the Appendix that is a well-defined and order preserving map.

Definition. Forw —m connecting AR operation, we define S — S such
that

(U, Kum) if weUm¢K, meup"(U—w);
c(UK)) = (UUw,K) if w¢U meK,wew (K —m);
(U,K) otherwise.

Algorithm AR:

1) ForeachU,K) € S,o((U,K)) € S.

2) For each paitUy, K1) and (U, K2) in S such that(Us, K2) covers
(Ul,Kl),UQ CUsUw CU; and K1 C K1 Um C K, let (UQ U
w, Ky Um) € S.

We say(Us, K2) covers(Uy, K,) if (Ui, K1) < (U, K2) and there is
no generalized synonym &f in between [1]. In step 2) of this algorithm,
we can ‘fill a gap’ between two generalized synonym relatigiis, K)
and(Usz, K2) in S by (Uz U w, K7 Um). In other words, we refine order
reIation(Ul, Kl) < (Uz, KQ) to (Ul, Kl) < (UQUU}7 K Um) < (Uz, KQ)
if applicable. In the Appendix we show that(U, K1)) = (U, K1) and
o((Ua, K3)) = (Ua, K3) in this case.

Algorithm AW:

1) ForeachU,K) € S, (w*(K),K) € S.
2) (@*(N),N) € S.
3) ForeachU,K) € S, @ (KNN),KNN)cS if KNN #0.

Step 1) means thatE NN = @ then(U, K) € Selse(@*(K),K) € S.

Algorithm AM:

1) ForeachU,K) € S, (U,n*(U)) € S.
2) (V.7 (V) € 5. B
3) ForeachU,K) e S, (UNnV,g*(UNV))eS if UNnV #0.

Step 1) meansthat NV =0then(U, K) € S else (U, z*(U)) € S.
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(D, M)

(E,00@0) (K, 000) (I, ®000)

/

(EL, @®)
(EKL, ®) (K, @)

(W, D)
Fig. 3.

Example 2.To illustrate the above algorithms, we start with a somewhat
artificial universe o, Mo; As) where Wy = Wy — {S}, My = M;
andA; = A; — {({S} x {O0,0}), (E,0)}. Semantic similarity lattice of
(Wa, My; As) is shown in Fig. 3.

Example 3 (AW operation)e add a wordscience(S) to the universe
(WyMsy; As) of the above Example 2. That i§V,, Ms; As) is updated
to a new universéWs, Ms; As) whereWs = Wy U {S}, M3 = Mo,
As = Ay U ({S} x {0O0,0}).

In the Algorithm AW step 1,E, I ), (I, 0 ), (K, 0 )and
(EL, 00 ) are included inS without modification. (§, M3) and (¥3, ()) take
the place of (|, M5) and (75, 0). We add EKLS, 00) and (KS, O) corre-
sponding toEKL, [0) and (K, O), respectively.KS, I )is added in step 2.
There is no need to apply step 3 in this case. The whole diagrashif
illustrated in Fig. 4.

Example 4 (AR operationNow we restore the relatiorie( [1) to have the
universg Wi My; Ay). Thatis, W, = Wi, My = M3, A; = Az U{(E,O)}.

Atthe step 1 of Algorithm AR, we have((E, [  ))=(E, [ ).
The other generalized synonyms are includef imithout modification. A
new generalized synonyr&K, Il ) is placed in between the order relation
(EKLS, O) < (K, M ). It is easy to check that this pair satisfies step 2
condition of Algorithm AR. The whole diagram &t is in Fig. 2.
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(Q! M3)

/I\

(E,00@®) (K, 0@®) (I, ®0O®)

/ N

(EL, @®) (KS, D)

(EKLS, @) (IKS, @)

Ne—

(W3, D)
Fig. 4.

6 Concluding remarks

When we build up a database for creative works, an objective flexible and
quantitative thesaurus is a must. Many of the existing thesauri for general
terms are, however, of more or less subjective nature and categories are
selected at compiler’s discretion. Also, words and their meanings are under
constant changes and once compiled thesaurus has to be kept up with these
modifications. Thus more systematic, versatile, and at the same time simple
method of thesaurus making seems to be needed.

The concept of elementary meanings has been advocated and utilized in
compiling Webster’s Collegiate Thesaurus [5]. If each word is supplied with
such elementary meanings so that all its meanings are covered by them in
a standard fashion, these relations define a Galois pair and naturally yield
various closed sets. In this paper, we took an axiomatic way to analyze
semantic structure of word groups. Assuming an abstract semantic world,
we deduced closed sets as generalized synonym sets. That is, we showed
that under certain axioms, we only need to consider closed sets as far as
the semantics are concerned. We also showed that the set of generalized
synonyms described as a certain pair of closed sets with top and bottom
elements makes a complete lattice. Mathematically speaking, our semantic
similarity lattice is similar to the concept lattice by Ganter and Wille [3],
but our interpretations are rather different.

In order to have a flexible thesaurus, we analyzed structure changes
corresponding to three basic environmental changes: A new word-meaning
relation is added, a new word or a new meaning is included with its word-
meaning relations. Actually we gave algorithms to have updated lattice struc-
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ture from previous one for the three operations. Although we treated only
three additive changes, we can easily introduce similar deletion operations
in order to incorporate some missing of the relations.

In this line of investigation, it is of utmost importance to have an ap-
propriate set of elementary meanings for a given set of words and define
their relations. This still is a problem to be solved, and to help accomplish
this intrinsically hard task, we proposed some axiomatic relations and basic
conditions that should hold among the subsets of word set and elementary
meaning set, and their correspondence.

We analyzed the relations defined by words-elementary meanings frame-
work. Since this is the first step towards understanding such mathematical
structure, we restricted ourselves to the case where only broader/narrower
relation is taken care of. The other relations such as antonyms, related terms,
and so forth, are left to be incorporated in the future endeavor.

Appendix

We here show somewhat detailed proofs of the validity of update algorithms
and related properties described in Sect. 5. We refer to the text for relevant
definitions and notations.

Lemma Al. ¢ is a well-defined and order preserving mapping frénto
S.

Proof. First we show that is well-defined. Thatis, we show((U, K)) € S
if (U,K)eS.Let(UK) e S,andletw € Uandm ¢ K. Considern
wherefz is the meaning function of univers@V, M; A). Sincei = p on
W —w, " (U) = (U — w) N (w) = p*(U — w) N {p(w) Um} =
{1*(U —w) N p*(w)} U {* (U — w) nm} = K U {p*(U — w) nm}.
Thereforep*(U) = K if m ¢ p*(U —w) andp*(U) = K Um if m €
w' (U — w). Becausem ¢ K, w*(K) = w*(K) = U, we can derive
W' (K Um) =w"(K)Nw"'(m) = w"(K)N{w"(m) Uw} = {w"(K)N
w*(m) }U{w*(K)Nw} = {UNw*(m)}Uw. Inthe case ofn € p* (U —w),
sincew*(m) 2 w*u* (U —w) 2 U —w, we have{U Nw*(m)} Uw O {UN
{U—-w}}Uw = U. Onthe other hand;* (K Um) C w*(K) = w*(K) =
U. Thusw*(K Um) = U. We conclude that ((U, K)) = (U, K) € S if
m ¢ p*(U —w) ando (U, K)) = (U, K Um) € Sif m € p*(U — w).

In the case where ¢ U andm € K, we can prove thai((U, K)) =
(U,K) € Sifw ¢ w(K—-m)ando((U,K)) = (UUw,K) € S if
w € w*(K —m), similarly as in the above case.

For the other cases (i.e. ¢ U andm ¢ K),o((U,K)) = (U,K) € S
trivially holds if (U, K) € S.
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To prove that is order preserving, consider a generalized synonyms pair
(U1, K1) < (Ua, K2) in S. Only the case where((Uy, K1)) = (U, K1 U
m) ando((Uz, K2)) = (U2 Uw, K3) is needed to be checked. The other
cases are directly proved from the relatidn O U, or K1 C K. In this
case, we hav®; D Uy Uw fromw € Uy, w ¢ Uz andU; 2O Us, and that
iso((U1, K1) < o((Us, K2)). O

Lemma A2. Let (Ui, K1), (Usz, K2) € S and (Us, K2) covers(Uy, K7 ).
That is(U;, K1) < (U, K2) and there is no generalized synonymSoin
between. Then for any subdéf of W such that/; D Us D Us, u*(Us) =
K holds. And alse*(K3) = Us holds forK's C M such thatk'; C K3 C
K.

Proof FromU; D Us D U, we haveK; C p*(Us) € Ky andU; 2
w*(Us) 2 Us D Us,. Then a generalized synonyfw*p.*(Us), u*(Us))

is |n betweenU;, K1) and(U,, K5). Because of the covering assumption,

(w*u*(Ug),u*(Ug)) = (Ul,Kl) must hold. That I$L*(U3) = Ky. The

remaining dual part can be shown similarly. a

Theorem A3. [AR] Let S be an SSL of an updated univer§&, M; A)
such thatWW = W,M = M, A = AU {(w,m)}and(w,m) ¢ A. That
is, § = {(UK)U C W,K C M,U = @*(K),K = i*(U)}. Then
S =S, U Scap Where

Sy = U(S) = {U((U7K))|(U7K) € S}
and

Saap = {(UQ Uw, Kq U m)\(Ul,Kl), (UQ,KQ) € S, (UQ,KQ)
covers(Uy, K1),
Uy CUyUw CUpandK; C K1 Um C Ko}

Proof. From Lemma ALY includesS,. So, we show that includesSg 4 p.
Let (Us Uw, K1 Um) € Sgap- Usingu*(Uz Uw) = K; from Lemma A2
andK; Um C Ky = p*(Uz), we obtaing*(Us Uw) = @*(Uz) Na* (w) =
e (Uz) N {p*(w) Um} = {p*(Uz2) Np*(w) } U{p" (Uz) Nm} = Ky Um.
w* (K1 Um) = Uz Uw can be proved by the similar way. Theref¢té, U
w, K1 Um) € S.

On the other hand, we can show that a generalized synonysrioén
element ofS, or Sgap. Let(U, K) € S. We consider the case whére# ()
andK # 0, first. If w ¢ U holds theru*(U) = p*(U) = K. If m ¢ K,
thenw*(K') = U holds trivially. Even ifm € K holds, we can show that
W (K) =w"({K—-m}Um) =w* (K —m)Nw(m) = (K —m)N
{@*(m) —w} ={o" (K —m)Nw*(m)} —w =w*(K) —w = U. Thatis
(U,K) € S,if w ¢ U holds. It can be proved similarly thél/, K') € S if
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m ¢ K. So we concentrate on the case where U andm € K. LetU =
UsUwandK = KjUmsuchthaty ¢ Us andm ¢ K. Sincew is notrelated
tomin (W, M; A), (U, K) = (UsUw, K1 Um) ¢ S. Thenu* (U Uw) =
1 (Ua) e (w) = i (Un) N {* (w) —m} = {* (Ua) N (w)} —m = K.
w*(K1; Um) = U, can be proved by the similar way. Lé&fy = p*(Us)
andU; = w*(K). SincelU; andK; are closed sets ofX, M ; A), we have
(U, K3) € S and(Uy, K1) € S. Applying the closure operatas™p* to
Us U w, we obtainls Uw C w*u*(Uz Uw) = w*(K71) = Uy. Therefore
Uy C Uy Uw C U;. Inthe same mannefy; € Ky Um C K» is proved.
If Uy Uw = Uj holds, the conditiomn € Ky = p*(Usz) = p*(Up — w) is
satisfied. Thenwe hay#/, K) = (U;Uw, K1Um) € Sand(UyUw, K1) =
(Uy, K1) € S, which corresponds to the case whéie K) is an element of
So.And (U, K) € S, is proved similarly ifK; Um = K. The case where
Us Uw C Uy andK; Um C Ko is nothing but the case whe(¥, K) €
Scap. Note thab((Ul, Kl)) = (Ul, Kl) ando((Ug, KQ)) = (UQ, KQ) are
proved through the above discussion. For the other cases, including the case
whenU = () or K = 0, itis trivial that (U, K) € S,. 0

Theorem A4. [AW] Let S be an SSL of an updated univer$& (M; A)
suchthatV = W U {w}, M = M, A= AU{w x N}, fi(w) = N. That
is, 5 = {(U,K)|U CW,K CM,U =w*(K), K =*(U)}. Then

S ={@"(K),K)|(w"(K),K) € S}U{@"(N),N)}
U{(w*(Kl ﬁN),Kl ﬂN)’(w*(Kl),Kl) eS,KiNN # @}

Proof. First, we show tha$ has these generalized synonyms. ([&K) €
SwhereU # (andK # (. Sincew ¢ U, " (w*(K)) = @*(@*(pn*(U))) =
(@ (@ (U)) = 7*(U) = u*(U) = K. Therefore(@"z* (U), K) =
(W*(K),K) € S. Also (w*z*(w), g*(w)) = (w*(N),N) € S. Becauses
isacomplete latticéw* (K), K)A(@*(N),N) = (w*(KNN),KNN) € S
forall (U, K) € SwhenK NN # 0.

LetU = 0 and let(0, M) € S. If p(w) = N = M thenw*(M) = w
and(w, M) € S. If i(w) = N # M then((), M) € S.

Let K = () and assume th&tV, () € S. (W U {w},0) = (W,0) € S
is trivial.

Next, we prove that a synonym relationdrhas one of these expressions.
Let(U,K) € S,U # 0 andK # 0. If w ¢ U thenK = u*(U) = p*(U).
ThatisK is closed in W, M; A). Then(w*(K), K) € S. Inthe case where
we UK =p"(U) =g"(U—-w) Ng*(w) = p*(U—w)N N. Let
K, = p*(U —w). BecauséX is closed in V, M; A), (w* (K1), K1) € S.
Sincell = w*(K) = @*(K; N N), (U,K) = @* (K, NN),K; N N) =
(W*(K1), K1) A (W*(N),N). In the case wher& = K; NN = N, itis
clear thatlU, K) = (w*(V), N).
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(w*(M), M) € S corresponds t¢w* (M), M) € S and(W, u*(W)) €

Sto (W, (W)) € 5. 0

Theorem A5. [AM] Let S be an SSL of an updated univer$& (M; A)
suchthatV =W, M = MU {m}, A= AU{V xm},w(m) = V. That
is, S = {(U,K)|UCW, K CM,U=*(K), K =5*U)}. Then

S={(U,m O)U,p(U)) € SU{(V,m"(V))}
U{(Ul N V,E*<U1 N V))‘(Ul,u*(Ul)) eS,UinNV #£ @}

Proof. From the duality ofy and w, this theorem is proved like
Theorem A4. O
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